Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 291(Pt 2): 132997, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34822861

RESUMO

This study aimed to reveal possible alterations to lipidomic profiles in Sydney rock oysters, Saccostrea glomerata, exposed to estrogenic mixtures (i.e., estrone, E1; 17ß-estradiol, E2; estriol, E3; 17α-ethinylestradiol, EE2; bisphenol A, BPA; 4-t-octylphenol, 4-t-OP; and 4-nonylphenol, 4-NP) at "low" and "high" concentrations, typical of those detected in Australian and global receiving waters. A seven-day acute exposure window exhibited significantly lower abundances of many non-polar metabolites in digestive gland, gills, and gonads. Overall, there was a strong effect of the carrier solvent ethanol (despite a low exposure of 0.0002%), with all solvent containing treatments exhibiting lower abundances of lipidic metabolites, especially in the gill and digestive gland. No significant changes of the lipidome were exhibited in the male gonad by estrogenic exposure. However, in the female gonad, significant reductions of phospholipids and phosphatidylcholine were associated with exposure to high estrogenic mixtures. We hypothesise that the decreases in these phospholipids in the female gonad may be attributable to 1) lower algal consumption and thus lower uptake of lipidic building blocks; 2) a reduction of available substrates for phospholipid and phosphatidylcholine synthesis; and/or 3) induction of reactive oxygen species via estrogen metabolism, which may cause lipid peroxidation and lower abundance of phospholipids.


Assuntos
Ostreidae , Poluentes Químicos da Água , Animais , Austrália , Estrogênios , Estrona/análise , Feminino , Gônadas , Lipidômica , Masculino , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
2.
Mar Pollut Bull ; 174: 113229, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34894580

RESUMO

An impact assessment of oceanic effluent releases from Belmont wastewater treatment works (WWTW) in Newcastle, Australia, was undertaken. Benthic infaunal assemblages in sandy sediments of ~25 m water depth were examined, at sites adjacent to the release point, and at increasing distances up to 2 km in both a NE and SW direction over five consecutive years (2016-2020). Localised impacts were evident for infaunal assemblages, with sites within 20 m of the outfall ("Impact" site types) exhibiting lower taxa richness and Shannon diversity, higher abundances of polychaetes and/or nematodes, higher polychaete ratios, and shifts in assemblage composition in comparison to sites at greater distances during some years. Taxa with increased localised abundances at the outfall were identified as indicators for monitoring impacts, including deposit-feeding polychaetes (Families Polygordiidae, Paraonidae and Dorvilleidae) and Phylum Nematoda. Future infaunal monitoring could include molecular tools and paired sediment analyses.


Assuntos
Monitoramento Ambiental , Poliquetos , Animais , Austrália , Sedimentos Geológicos , Humanos , Oceanos e Mares
3.
Water Res ; 200: 117257, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34077838

RESUMO

Estrogenic compounds enter waterways via effluents from wastewater treatment works (WWTW), thereby indicating a potential risk to organisms inhabiting adjacent receiving waters. However, little is known about the loads or concentrations of estrogenic compounds that enter Australian WWTWs, the efficiency of removing estrogenic compounds throughout the various stages of tertiary WWTW processes (which are common in Australia), nor the concentrations released into estuarine or marine receiving waters, and the associated risk for aquatic taxa residing in these environments. Therefore, seven estrogenic compounds, comprising the natural estrogens estrone (E1), 17ß-estradiol (E2) and estriol (E3), the synthetic estrogen (EE2), and the industrial chemicals bisphenol A (BPA), 4-t-octyl phenol (4-t-OP) and 4-nonyl phenol (4-NP), in wastewater samples were quantified via liquid chromatographic-mass spectrometry (LC-MS) after solid-phase extraction at different stages of wastewater treatment and associated receiving waters. The concentrations of the target compounds in wastewater ranged from < LOQ (limit of quantification) to 158 ng/L for Tanilba Bay WWTW and < LOQ to 162 ng/L for Belmont WWTW. Most target compounds significantly declined after the secondary treatment phase. Appreciable removal efficiency throughout the treatment process was observed with removal from 39.21 to 99.98% of influent values at both WWTWs. The reduction of the natural estrogens (E1, E2 and E3) and 4-t-OP were significantly greater than EE2, BPA, and 4-NP in both WWTWs. Risk quotients (RQs) were calculated to assess potential ecological risks from individual estrogenic compounds. In predicted diluted effluents, no targeted compounds showed any ecological risk (RQ ≤1.65 × 10-2) at both WWTWs. Similarly, all RQs for shore samples at both WWTWs were below 1. Finally, the hazard index (HI), which represents combined estrogenic contaminants' ecological risk, indicated no mentionable risk for predicted diluted effluents (HI = 0.0097 to 0.0218) as well as shoreline samples (HI = 0.393 to 0.522) in the receiving estuarine or marine waters.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Austrália , Monitoramento Ambiental , Estrogênios/análise , Estrona/análise , Poluentes Químicos da Água/análise
4.
Aquat Toxicol ; 231: 105722, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33360311

RESUMO

The current study investigated the effect of environmentally relevant mixtures of estrogens at levels representative of receiving waters on the metabolome of the Sydney rock oyster, Saccostrea glomerata. Oysters were exposed to a "low" and a "high" mixture of (xeno) estrogens (representative of Australian and global receiving waters respectively) for 7 days and digestive gland, gill, and gonad tissue were sampled for quantification of polar metabolites by 1H NMR spectroscopy. Exposure to both mixtures lowered body mass and altered the metabolite profile in the digestive glands. Comparatively, gills, and ovaries demonstrated lesser sensitivity to the mixtures, with significant metabolomic alterations observed only for the high mixture. The male gonad did not respond to either estrogenic exposure. In the responsive tissues, major metabolites including amino acids, carbohydrates, intermediates of the tricarboxylic acid cycle and ATP were all down-regulated and exhibited tissue-specific patterns of down-regulation with the greatest proportion of metabolites down-regulated due to estrogenic exposure in the digestive gland. Exposure to (xeno) estrogen mixtures representative of concentrations reported in receiving waters in Australia and globally can impact the metabolome and associated energy metabolism, especially in the digestive gland, translating to lower pools of available ATP energy for potential cellular homeostasis, somatic maintenance and growth, reproduction and fitness.


Assuntos
Exposição Ambiental , Estrogênios/toxicidade , Metaboloma/efeitos dos fármacos , Especificidade de Órgãos , Ostreidae/metabolismo , Animais , Austrália , Peso Corporal/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Feminino , Glicólise/efeitos dos fármacos , Masculino , Metabolômica , Ostreidae/efeitos dos fármacos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Razão de Masculinidade , Testículo/efeitos dos fármacos , Testículo/metabolismo , Poluentes Químicos da Água/toxicidade
5.
Environ Pollut ; 266(Pt 1): 114994, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32653741

RESUMO

Very little is currently known regarding the effects of estrogenic endocrine disrupting chemicals on embryonic and larval development in molluscs, nor the potential effects of parental (F0) exposure on resultant F1 offspring. In this study, we assessed the embryotoxic impacts of exposure to environmentally relevant concentrations of the synthetic estrogen, 17α-ethinylestradiol (EE2), to male and female parents (50 ng/L) and their offspring (5 and 50 ng/L) in the native Australian Sydney rock oyster, Saccostrea glomerata. There were no detectable effects of parental exposure on fertilisation success, proportions of early larval (F1) morphs and unfertilised eggs. Offspring impacts were evidenced in terms of developmental delays, with decreased percentages of D-veligers retained by 45 µm mesh, along with a reduction of swimming capabilities of larvae at 2 days post-fertilisation (dpf) when both parents had been exposed to 50 ng/L EE2. Although no significant parental effects were found on the survival of F1 larvae at 9 dpf, retardation of shell growth was observed on F1 larvae in treatments where both parents had been exposed to 50 ng/L EE2. Subsequent larval exposure from 2 to 9 dpf caused declines in survival and reduction of shell length in F1 larvae at both 5 and 50 ng/L EE2 across all parental exposure treatments. Collectively, parental EE2 imparts effects on offspring in terms of retardation of larval development, and subsequent offspring exposure to EE2 further exacerbates impacts to development. Future research should aim to understand the potential mechanisms of EE2 induced toxicity and its transmission resulting in altered phenotypes of the F1 generation.


Assuntos
Disruptores Endócrinos , Congêneres do Estradiol , Ostreidae , Poluentes Químicos da Água , Animais , Austrália , Etinilestradiol , Feminino , Masculino
6.
Environ Pollut ; 248: 1067-1078, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31091639

RESUMO

Estrogenic endocrine disrupting chemicals (EDCs) are natural hormones, synthetic compounds or industrial chemicals that mimic estrogens due to their structural similarity with estrogen's functional moieties. They typically enter aquatic environments through wastewater treatment plant effluents or runoff from intensive livestock operations. Globally, most natural and synthetic estrogens in receiving aquatic environments are in the low ng/L range, while industrial chemicals (such as bisphenol A, nonylphenol and octylphenol) are present in the µg to low mg/L range. These environmental concentrations often exceed laboratory-based predicted no effect concentrations (PNECs) and have been evidenced to cause negative reproductive impacts on resident aquatic biota. In vertebrates, such as fish, a well-established indicator of estrogen-mediated endocrine disruption is overexpression of the egg yolk protein precursor vitellogenin (Vtg) in males. Although the vertebrate Vtg has high sensitivity and specificity to estrogens, and the molecular basis of its estrogen inducibility has been well studied, there is growing ethical concern over the use of vertebrate animals for contaminant monitoring. The potential utility of the invertebrate Vtg as a biomonitor for environmental estrogens has therefore gained increasing attention. Here we review evidence providing support that the molluscan Vtg holds promise as an invertebrate biomarker for exposure to estrogens. Unlike vertebrates, estrogen signalling in invertebrates remains largely unclarified and the classical genomic pathway only partially explains estrogen-mediated activation of Vtg. In light of this, in the latter part of this review, we summarise recent progress towards understanding the molecular mechanisms underlying the activation of the molluscan Vtg gene by estrogens and present a hypothetical model of the interplay between genomic and non-genomic pathways in the transcriptional regulation of the gene.


Assuntos
Disruptores Endócrinos/análise , Moluscos/metabolismo , Vitelogeninas/análise , Poluentes Químicos da Água/análise , Poluição da Água/análise , Animais , Compostos Benzidrílicos/análise , Biomarcadores/análise , Disruptores Endócrinos/toxicidade , Estrogênios/análise , Estrona/análise , Feminino , Peixes/metabolismo , Masculino , Fenóis/análise , Receptores de Estrogênio/metabolismo , Reprodução , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...